Semiparametric Efficient and Robust Estimation of an Unknown Symmetric Population Under Arbitrary Sample Selection Bias
نویسندگان
چکیده
We propose semiparametric methods to estimate the center and shape of a symmetric population when a representative sample of the population is unavailable due to selection bias. We allow an arbitrary sample selection mechanism determined by the data collection procedure, and we do not impose any parametric form on the population distribution. Under this general framework, we construct a family of consistent estimators of the center that is robust to population model misspecification, and we identify the efficient member that reaches the minimum possible estimation variance. The asymptotic properties and finite sample performance of the estimation and inference procedures are illustrated through theoretical analysis and simulations. A data example is also provided to illustrate the usefulness of the methods in practice.
منابع مشابه
Semiparametric location estimation under non-random sampling.
We study a class of semiparametric skewed distributions arising when the sample selection process produces non-randomly sampled observations. Based on semiparametric theory and taking into account the symmetric nature of the population distribution, we propose both consistent estimators, i.e. robust to model mis-specification, and efficient estimators, i.e. reaching the minimum possible estimat...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملDiscrete Choice Models for Nonmonotone Nonignorable Missing Data: Identification and Inference
Nonmonotone missing data arise routinely in empirical studies of social and health sciences, and when ignored, can induce selection bias and loss of efficiency. In practice, it is common to account for nonresponse under a missing-at-random assumption which although convenient, is rarely appropriate when nonresponse is nonmonotone. Likelihood and Bayesian missing data methodologies often require...
متن کاملSemiparametric Estimation of Heteroscedastic Binary Choice Sample Selection Models under Symmetry
Binary choice sample selection models are widely used in applied economics with large crosssectional data where heteroscedaticity is typically a serious concern. Existing parametric and semiparametric estimators for the binary selection equation and the outcome equation in such models su®er from serious drawbacks in the presence of heteroscedasticity of unknown form in the latent errors. In thi...
متن کاملSemiparametric Maximum Likelihood Inference for Truncated or Biased-sampling Data
Sample selection bias has long been recognized in many fields including clinical trials, epidemiology studies, genome-wide association studies, and wildlife management. This paper investigates the maximum likelihood estimation for censored survival data with selection bias under the Cox regression models where the selection process is modeled parametrically. A novel expectation-maximization alg...
متن کامل